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Field Dependent Coherene Length in the Superlean, High-� SuperondutorCeCoIn5L. DeBeer-Shmitt,1 C. D. Dewhurst,2 B. W. Hoogenboom,3 C. Petrovi,4 and M. R. Eskildsen1, �1Department of Physis, University of Notre Dame, Notre Dame, IN 46556 USA2Institut Laue-Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble, Frane3M.E. M�uller Institute for Strutural Biology, Biozentrum,and Institute of Physis, University of Basel, CH-4056 Basel, Switzerland4Condensed Matter Physis and Materials Siene Department,Brookhaven National Laboratory, Upton, NY 11973 USA(Dated: May 29, 2006)Using small-angle neutron sattering, we have studied the ux-line lattie (FLL) in superondut-ing CeCoIn5. The FLL is found to undergo a �rst-order symmetry and reorientation transition at� 0:55 T at 50 mK. The FLL form fator in this material is found to be independent of the appliedmagneti �eld, in striking ontrast to the exponential derease usually observed in superondutors.This result is onsistent with a strongly �eld-dependent oherene length in CeCoIn5, in agreementwith reent theoretial preditions for superlean, high-� superondutors.PACS numbers: 74.25.Qt, 74.25.Op, 74.70.Tx, 61.12.ExSine the disovery of heavy-fermion superondutiv-ity in CeCoIn5, a plethora of interesting phenomena havebeen observed in this material. Among these are oneof the highest ritial temperature (T = 2:3 K) in anyheavy-fermion superondutor [1℄, d-wave pairing sym-metry [2, 3℄, �eld- and pressure-indued quantum-ritialpoints and non-Fermi liquid behavior [4, 5, 6, 7, 8℄, strongindiations of the �rst realization of a non-uniformFulde-Ferrell-Larkin-Ovhinnikov state [9, 10, 11, 12, 13, 14℄,and suggestions of multi-band or multi-order parametersuperondutivity [15, 16℄.In addition, CeCoIn5 is also found to represent an ex-treme ase of a lean, high-� superondutor. The elastieletroni mean free path in this material ranges from l= 840 �A at T [17℄, inreasing exponentially as the tem-perature is dereased and reahing values of 4 to 5 �mat 400 mK [18, 19℄. Literature values for the penetrationdepth varies from 190 nm [18℄ to 280 nm [20℄. Estimatesof the orbital ritial �eld based on dH2=dT jT rangefrom Hkorb(0) = 13:2 T [17℄ to 15.0 T [21℄, yielding an in-plane oherene length of �orb = 47� 50 �A, and hene �= 40 - 60 and l=� � 103 or larger at temperatures belowa few hundred milliKelvin.In many superondutors, detailed information aboutthe nature of the superonduting state has been ob-tained from small-angle neutron sattering (SANS) stud-ies of the ux-line lattie (FLL). Examples of this areFLL symmetry transitions driven by non-loal eletrody-namis [22℄ or a superonduting gap anisotropy [23, 24℄,and subtle hanges in the fundamental length sales ob-tained from the FLL neutron reetivity [25, 26℄. In thisLetter we report on SANS studies of the FLL in CeCoIn5.In striking ontrast to the exponential dependene usu-ally observed in superondutors, the FLL form fatorin this material is found to be independent of the ap-plied magneti �eld. This result indiates a oherene

length whih dereases with inreasing �eld, in quali-tative agreement with reent theoretial preditions forlean, high-� superondutors [27℄.The SANS experiments were arried out at the D22and D11 instruments at the Institut Laue-Langevin. TheCeCoIn5 single rystals used in the experiment weregrown from exess indium ux, and had a T = 2:3 Kand a H2(0) = 5:0 T for �elds applied parallel to the axis [1℄. The sample was omposed of three individuallyaligned single rystals with thiknesses 0.13 - 0.22 mmmounted side by side. The total mass of the sample was86 mg. The use of rather thin rystals was neessary, dueto the strong neutron absorption by indium. Inidentneutrons with a wavelength of �n = 4.5 �A (D11) and7 �A (D22) and a wavelength spread of ��n=�n = 10%were used, and the FLL di�ration pattern was olletedby a position sensitive detetor. For all measurements,the sample was �eld-ooled to a base temperature of 40- 50 mK in a dilution refrigerator insert, plaed in a su-peronduting ryomagnet. Horizontal magneti �elds inthe range 0.4 - 2.0 T were applied parallel to the rys-talline  axis and the inoming neutrons. Bakgroundsubtration was performed using measurements follow-ing zero-�eld ooling.Fig. 1 shows FLL di�ration patterns obtained at threedi�erent applied �elds. Eah image is a sum of the sat-tering from the FLL, as the sample is rotated and tiltedin order to satisfy the Bragg ondition for the di�erentreetions. At �elds below 0.55 T, 12 (2 � 6) reetionsare observed as shown in Fig. 1(a), orresponding totwo nearly hexagonal domains with Bragg peaks alignedalong h100i-diretions. As the �eld is inreased above� 0:55 T the FLL undergoes a �rst order transition to arhombi symmetry as shown in Figs. 1(b) and (). Againtwo rhombi FLL domain orientations are observed, in-diated by the 8 (2 � 4) Bragg peaks. As evident from
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[100]FIG. 1: (Color) FLL di�ration patterns for CeCoIn5 with applied �elds 0.5 T (a), 0.55 T (b) and 0.75 T (), after subtrationof bakground measurement. The data is smoothed and the enter of the image is masked o�. The rystalline a axis is vertial.the dereasing peak splitting in the rhombi phase, theFLL gradually evolves towards a square symmetry as the�eld is inreased. These results are in agreement with ourearlier studies [28℄.The evolution of the symmetry transition, quanti�edby the FLL opening angle �, is summarized in Fig. 2.Though it was not possible to reliably �t and extrat aFLL split angle above 0.85 T, high-resolution measure-ments up to 1.0 T still showed a weak rhombi distortion.A linear extrapolation of the opening angle to � = 90Æ,yields a transition �eld H2 = 1:1 T above whih a per-fetly square FLL is realized. Besides the opening angle,we also used sattering vetors belonging to the same do-main to obtain the internal �eld by the relation q1� q2 =(2�)2B=�Æ, where �Æ = 20:7� 104 T�A2 is the ux quan-tum. From this we obtain dB=d(�ÆH) = 0:992� 0:012,whih leads us to set B = �ÆH for the remainder of thiswork.A square FLL an either be stabilized by a gapanisotropy as observed e.g. in YBCO [24℄, or by non-loaleletrodynamis oupled with a Fermi surfae anisotropyas seen in the boroarbide superondutors [22, 29℄. In
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FIG. 2: Field dependene of the FLL opening angle, �. Theinsets show the real spae orientation of the FLL unit ell inthe low and high �eld on�gurations.

the ase of CeCoIn5 the orientation of the gap nodes havebeen subjet to ontroversy [2, 3, 16℄, although reenttheoretial work aimed at resolving this issue onludedthat the pairing symmetry in this material is dx2�y2 [30℄.As we have previously reported, suh an orientation ofthe gap nodes is onsistent with the high-�eld square FLLbeing stabilized by d-wave pairing [28℄. On the otherhand, an extrapolation to H = 0 of the the high-�eldopening angle in Fig. 2 yields � � 60Æ, as expeted if theFLL symmetry is determined by non-loal e�ets [29℄.We now turn to measurements of the FLL form fator,whih are the main results of this Letter. Fig 3(a) showsthe FLL reetivity obtained from the integrated inten-sity of the Bragg peaks, as the sample is rotated throughthe di�ration ondition. The reetivity is given byR = 2�2�2nt16�2Æq jF (q)j2; (1)where  = 1:91 is the neutron gyromagneti ratio, �n isthe neutron wavelength, t is the sample thikness, and qis the sattering vetor [31℄. The form fator, F (q), is theFourier transform of the magneti �eld pro�le around avortex, and depends on both the penetration depth andthe oherene length. Fig. 3(b) shows the FLL form fa-tor determined from the reetivity. Here we have usedthe measured opening angle, �(H), in Fig. 2 to determinethe magnitude of the sattering vetor, and hene om-pensate for e�ets due to the FLL symmetry transition.In the high-�eld rhombi FLL phase qsq = qÆ=psin�where qÆ = 2�pB=�Æ. In the low-�eld distorted hexag-onal phase, the 4 Bragg peaks aligned along the h100i-diretion have qhex1 = qÆp2(1� os �)= sin �, while forthe remaining 8 peaks qhex2 = qÆ=psin �.The �eld-independent form fator observed forCeCoIn5 is in striking ontrast to the exponential de-rease observed in other superondutors. However, it isimportant to note that if the form fator was truly inde-pendent of q, this would imply an unphysial situationwith a diverging magneti �eld at the vortex enter anda oherene length equal to zero. To reonile this appar-
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FIG. 3: Field dependene of the reetivity (a) and formfator (b) for the (1,0) FLL Bragg reetions. Triangles or-respond to a hexagonal FLL and the squares and diamondsto a rhombi FLL. The solid square is from previous work[28℄. The dashed and dotted lines are alulated using Eqs.(1) and (2) with the following values for the oherene lengthand the penetration depth: � = 81 �A, � = 2350 �A (dashedline); � = 50 �A, � = 3750 �A (dotted line). The solid lineorresponds to a onstant form fator, F = 2:08 � 10�4 T.ent paradox, it is neessary to assume a �eld dependeneof either the superonduting penetration depth, the o-herene length or both.Several models exists for the magneti �eld pro�learound the vorties. In the following we have based theanalysis on the form fator obtained by Clem [32℄:F (q) = B g K1(g)1 + �2q2 ; g = p2� (q2 + ��2)1=2; (2)valid for �� 1. It is worth to point out that while thisform fator was obtained for an isotropi superondu-tor, numerial simulations found no signi�ant di�erenebetween superondutors with s- or d-wave pairing [33℄.The dashed lines in Figs. 3(a) and (b) show the re-etivity and form fator alulated from Eqs. (1) and(2) using an average literature value for the penetrationdepth � = 2350 �A and �2 = q �Æ2�H2 = 81 �A. As al-ready disussed, these alulated values are not onsis-tent with the experimental data. However, a more ap-propriate value for the oherene length is obtained fromthe orbital ritial �eld, �orb =q �Æ2�Horb � 50 �A [17, 21℄.

This does orrespond to a smaller slope of jF (q)j2, butalso inreases the disrepany between the measured andalulated values of jF (q)j2 sine, for a given � and q (orH), the magnitude of the form fator is determined by�2. Using the penetration depth as a �tting parameter,one obtains the dotted lines in Fig. 3 for � = 3750 �A.Although this provides a better agreement with the data,suh a large value of � is not onsistent with reports inthe literature [18, 20℄. In ontrast, a perfet �t to thedata is obtained with a onstant value of the form fator,F = 2:08 � 10�4 T, and orrespondingly a reetivity/ 1=q, as shown by the solid lines in Fig. 3.It is important to note that no signi�ant disorderingof the FLL is observed. Exept for systemati di�er-enes between the two beamlines, the FLL roking urvewidths remain essentially onstant throughout the mea-sured �eld range. On D22 we �nd roking urve widthsgoing from 0:14Æ�0:02Æ FWHM at 0.55 T to 0:16Æ�0:01ÆFWHM at 1 T, omparable to the experimental resolu-tion (� 0:08Æ FWHM). Below the reorientation transi-tion a slightly higher value of 0:20Æ�0:04Æ FWHM is ob-served. On D11 FLL roking urve widths derease from0:26Æ � 0:03Æ FWHM at 0.7 T to 0:19Æ � 0:01Æ FWHMat 2 T. Suh narrow roking urve widths indiate a verywell ordered FLL with a longitudinal orrelation lengthin the miron range, onsistent with weak pinning due tothe high leanliness of CeCoIn5. Furthermore, FLL dis-order above a ertain threshold has been shown to leadto derease in the sattered intensity, exeeding the usualexponential �eld dependene of the form fator [34℄. Wean therefore exlude FLL disordering as the ause forthe �eld-independene of the form fator in CeCoIn5.A onstant form fator ould in priniple be due to aderease of the penetration depth with inreasing �eld,aused either by an inreasing superuid density or anon-uniform spin magnetization ontributing to the mag-neti ux arried by eah vortex. We do not onsider the�rst possibility realisti. Furthermore, while CeCoIn5 isindeed paramagneti [21℄, spin polarization e�ets willlead to an enhanement of the form fator in ontrast tothe strong suppression observed in this material [35, 36℄.We therefore onlude that while paramagneti e�etsmay ontribute, they are not the dominating mehanismbehind the �eld-independent form fator. In the follow-ing we therefore restrit our analysis to onsider only a�eld-dependent oherene length.In Fig. 4, we show the oherene length obtained byvarying � to ahieve the measured form fator at eah�eld. The oherene length is found to follow a 1=pHbehavior. While di�erent models for F (q) will provideslightly di�erent values for the oherene length, thequalitative behavior will remain unhanged. Fig. 4 alsoshows the extrated oherene length as a funtion ofintervortex spaing, a. Within the experimental errorshown by the satter in the data, the oherene lengthis found to inrease linearly with the intervortex spaing
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FIG. 4: Field dependene of the oherene length, �(H) plot-ted versus applied �eld (solid symbols), and vortex separation(open symbols). The solid and dashed lines are �ts to the datadesribed in the text.while at all times satisfying � < a. Extrapolating to avortex separation of 125 �A (orresponding to an orbitalritial �eld Horb = 13:2 T) yields � = 43:0� 4:6 �A, inreasonable agreement with �orb = 50 �A.We believe that our data provide the �rst exampleof a strongly �eld-dependent oherene length in a su-perlean, high-� superondutor as reently theoretiallypredited by Kogan and Zhelezina [27℄. In their model,the oherene length is predited to be proportional to1=pH and orrespondingly depends linearly on the vor-tex separation. Experimentally we �nd d�=da = (0:55�0:02)=p2�, whih is roughly twie the theoretially pre-dited slope [27℄. However, the theoretial predition wasbased on assumptions of weak-oupling s-wave superon-dutivity and a simple Fermi surfae topology (sphere orylinder), whih are not valid for CeCoIn5. Based on thiswe argue that the agreement between theory and exper-iment is remarkable, supporting the universal nature ofthe e�et. At low �elds the model predits the oherenelength to saturate. Based on our experimental resultsthis ut-o� in CeCoIn5 our below the lowest measured�eld of 0.4 T. We believe that the �eld-dependent oher-ene length is so prominently observed in CeCoIn5 due tothe ombination of a large � and the very high leanlinessof this material.Additional evidene for the unusual magneti-�eld re-sponse of CeCoIn5 has been observed in the quasipartilemean free path, as extrated from measurements of theHall angle [37℄. Spei�ally, the mean free path is foundto derease as the applied �eld inreases, being roughlyequal to the vortex separation for the range of �elds ov-ered by our SANS measurements. This leads us to spe-ulate that a onnetion exists between � and l beyondthe simple Pippard model.Finally, we want to note that while previously reportsof a �eld dependent vortex ore size have been made bySonier et al. [38, 39℄, these were attributed to a vortex-
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